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Abstract 

The extended tanh method is used to construct exact periodic and soliton solutions 
of ( ) -12 + dimensional nonlinear evolution equations. The compactons     
solutions, solitary wave solutions, solitary patterns solutions, and periodic wave 
solutions of the generalized ( ) -12 + dimensional Boussinesq, breaking soliton, and 
BKP equations are successfully obtained. These solutions may be important of 
significance for the explanation of some practical physical problems. It is shown 
that the extended tanh method provides a powerful mathematical tool for solving 
many great nonlinear partial differential equations in mathematical physics. 

1. Introduction 

Studies of various physical structures of nonlinear dispersive 
equations had attracted much attention in connection with the important 
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problems that arise in scientific applications. Mathematically, these 
physical structures have been studied by using various analytical 
methods, such as inverse scattering method [1], Darboux transformation 
method [4, 9], Hirota bilinear method [5], Lie group method [2, 10], 
bifurcation method of dynamic systems [6, 11, 22], sine-cosine method   
[7, 8, 13, 15, 16, 18, 19], tanh function method [7, 8, 17, 20], Fan-
expansion method [3, 21], homogenous balance method [14], and so on. 
Practically, there is no unified technique that can be employed to handle 
all types of nonlinear differential equations. 

Recently, by using the sine-cosine method, Tascana and Bekir [12] 
studied the following ( )-12 + dimensional Boussinesq, breaking soliton, 

and BKP equations, respectively, 

( ) ,0
2

=−−−− xxxxxxyyxxtt uuuuu  (1.1) 

,,044 xyxxxxyt vuvuuvuu ==α+α+α+  (1.2) 

( ) ( ) .,,66 yxxyyxyyyxxxt wvwuvwuwwww ==+++=  (1.3) 

It is shown that this class gives compactons, conventional solitons, 
solitary patterns, and periodic solutions. 

In this paper, we will study the generalized forms of Equations (1.1), 
(1.2), and (1.3), which are written by 
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where n is a non-zero integer, α  is known constant. 

It is the objective of this work to further complement in implementing 
the tanh method [7, 8] to stress its power in handling nonlinear 
equations, so that one can apply it to models of various types of 
nonlinearity. The next interest is the determination of exact travelling 
wave solutions with distinct physical structures to the generalized 
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( )-12 + dimensional Boussinesq, breaking soliton, and BKP equations. 

Our approach depends mainly on the tanh method [7, 8] that has the 
advantage of reducing the nonlinear problem to a system of algebraic 
equations that can be solved by using Mapple or Mathematica. As stated 
before, our approach depends mainly on the extended tanh method. In 
what follows, we highlight the main steps of the proposed method. 

2. Analysis of the Methods 

 For the extended tanh method, we first use the wave variable 
,ctx −=ξ  to carry a PDE in two independent variables 

( ) ,0,,,,, =…xxxxxxt uuuuuP  (2.1) 

into an ODE 

( ) .0,,,, =′′′′′′ …uuuuQ  (2.2) 

Equation (2.2) is then integrated as long as all terms contain derivatives, 
where integration constants are considered zeros. 

The standard tanh method introduced in [7, 8], where the tanh is 
used as a new variable, since all derivatives of a tanh are represented by 
a tanh itself. We use a new independent variable 

( ),tanh µξ=Y  (2.3) 

that leads to the change of derivatives: 
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We then apply the following finite expansion: 
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where M is a positive integer that will be determined to derive a closed 
form analytic solution. However, if M is not an integer, a transformation 
formula is usually used. Substituting (2.4) and (2.5) or (2.6) into the 
simplified ODE (2.2) results in an equation in powers of Y. To determine 
the parameter M, we usually balance the linear terms of highest order in 
the resulting equation with the highest order nonlinear terms. With M 
determined, we collect all coefficients of powers of Y in the resulting 
equation, where these coefficients have to vanish. This will give a system 
of algebraic equations involving the parameters ( ),,,0 Mkak …=  

( ) ,,,,1 µ= Mkbk …  and c. Having determined these parameters, knowing 

that M is a positive integer in most cases, and using (2.5) or (2.6), we 
obtain an analytic solution ( )txu ,  in a closed form. 

3. Using the Extended Tanh Method 

1. The generalized ( )-12 + dimensional Boussinesq equation (1.4). 

We begin first with the Equation (1.4). Using the wave variable 
,ctyx −+=ξ  the Equation (1.4) is carried to ODE, 

( ) ( ) ( ) ( )( ) .02 422 =−″−″− nn uuuc  (3.1) 

Integrating (3.1) twice, respectively, using the constants of integration to 
be zero, we find 

( ) [ ( ) ( ) ] .012 22122 =′−+′′−−− −− uunuunuuc nnn  (3.2) 

Using the assumptions of the tanh method, (2.4)-(2.6) gives 
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To determine the parameter M, we usually balance 2S  in the resulting 
Equation (3.3) with the highest order nonlinear terms. This in turn gives 
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( ) ,212 ++−= MnMM  (3.4) 

so that, 

.2
2
−

−= nM  (3.5) 

To get a closed form analytic solution, the parameter M should be an 
integer. A transformation formula 

,2
1
−

−
= nvu  (3.6) 

should be used to achieve our goal. This in turn transforms (3.2) to 
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Balancing vv ′′  and 3v  gives .2=M  The extended tanh method allows us 
to use the substitution 

( ) ( ) ., 2
2

1
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210

−− ++++== YBYBYAYAAYStxv  (3.8) 

Substituting (3.8) into (3.7), collecting the coefficients of each power of Y, 
and using Mapple to solve the resulting system of algebraic equations, we 
obtain the following three sets: 
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Noting that ,2
1
−

−
= nvu  for ,,,,4,3,1,2

0 "" knn
nA ±±±=+>  or 

,1,10 −=−< nA  we obtain the solitary wave solution and the solitary 
patterns solutions: 

( ) ( )
( ) ,2

2222
2tanh1,,

2
1

0
2

02
0

−
−




































+

+−±+
+
−

−=
n

tn
nAyxnn

nAAtyxu  

(3.12) 

( ) ( )
( ) ,2

2222
2coth1,,

2
1

0
2

02
0

−
−




































+

+−±+
+
−

−=
n

tn
nAyxnn

nAAtyxu  

(3.13) 
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where 
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However, for ( ) ,,12,,5,3,1,00 "" +±±±=< knA  or ,00 >A  
,1−=n  we obtain the periodic and compactons solutions: 
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where 
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2. The generalized ( )-12 + dimensional breaking soliton equations 

(1.5). 

We now consider the generalized ( )-12 + dimensional breaking soliton 

equations (1.5). Using the wave variable ,ctyx −+=ξ  we find 

( ) .,044)( vuvuvuuuc nn ′=′=′α+′α+′′′α+′−  (3.18) 

Integrating the first and the second equation in the system and 
neglecting constants of integration, we find 

( ) .,04 vuuvucu nn ==α+″α+−  (3.19) 

Substituting the second of (3.19) into the first equation of (3.19), we find 

( ) .04 2 =α+″α+− uucu nn  (3.20) 

Utilizing the same procedure as before, we get a series of exact solutions 
for Equation (3.20), which include solitary patterns solutions, compactons 
solutions, and periodic solutions. Three of which are solitary wave 
solutions and the solitary patterns solutions: 
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where ( )
( )

( )
( ) ,,3,1,0,4316

2,4316
107 2

0 "±−=<α
−α

−−±=µ
−α

−= ncn
nc

n
ncA  

( ) ,,12 "+± k  or .1,0 =>α nc  

However, for ,,,,4,3,2,1,0 "" knc ±±±−−=>α  or ,1,0 =<α nc  
we obtain the periodic and compactons solutions: 
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3. The generalized ( )-12 + dimensional BKP equation (1.6). 

We next consider the generalized ( )-12 + dimensional BKP equation 
(1.6). Using the wave variable ,ctyx −+=ξ  we find 

( ) ( ) ( ) ,,,66)(2 wvwuvwuwwwc nn ′=′′=′′+′+′′′=′−  (3.27) 

Integrating the first, second, and the third equation in the system and 
neglecting constants of integration, we find 

( ) ( ) ( ) .,,662 wvwuvwuwwcw nn ==++″=−  (3.28) 

Substituting the second and the third equation of (3.28) into the first 
equation of (3.28), we find 

( ) .122 2wwcw nn +″=−  (3.29) 

Utilizing the same procedure as before, we get a series of exact solutions 
for Equation (3.29), which include solitary patterns solutions, compactons 
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solutions, and periodic solutions. Three of which are solitary wave 
solutions and the solitary patterns solutions: 
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However, for ( ) ,,12,,5,3,1,0 "" +±±±+=> knc  we obtain the 
periodic and compactons solutions: 
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4. Discussion 

The tanh method was used to investigate the generalized ( )-12 +  
dimensional Boussinesq, breaking soliton, and BKP equations. The study 
revealed compactons, solitary, and periodic wave solutions for all 
examined variants. The study emphasized the fact that, the tanh method 
is reliable in handling nonlinear problems. The obtained results clearly 
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demonstrate the efficiency of the method used in this work. Moreover, the 
method is capable of greatly minimizing the size of computational work 
compared to other existing techniques. In addition, specific restriction is 
usually required in that the value of M must be an integer to get closed 
form analytic solutions, therefore, transformation formula is required to 
overcome this difficulty. The tanh method worked successfully in 
handling nonlinear dispersive equations. This emphasizes the fact that, 
the tanh method is applicable to a wide variety of nonlinear problems. 
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